
Project 2
Image Classification with Convolutional Neural Networks

David Huson Joel Ward
April 16, 2023

Abstract

Computer vision is a popular field in today's

world. From facial recognition to object detection and

everything in between, they all use some form of

computer vision. In this paper we will focus on a

specific subfield in computer vision, namely Image

Classification. The dominant method of performing

image classification is to use some form of a

convolutional network. In this paper we will explore

many properties of such a network to determine how

altering each property affects the performance of the

image classification model.

1. Problem Description

For AI to grow to become a benefit to society in

everyday life, a key component for many agents is in

their ability to differentiate between different types of

objects when using a camera as a source of perception.

This project attempts to solve this problem for a

specific scenario - being able to distinguish if an image

contains a human, or a horse (that is to say, classify an

image). To demonstrate our solution, an image is

pulled from a dataset of artificially generated pictures

of both horses and humans [5], and the AI model will

run over these images and attempt to classify them

accordingly. This will allow a user to conduct

experiments in the viability of basic image recognition

concepts.

2. Solution Method

The common method to solve the problem of

image classification is to use what is known as a

Convolutional Neural Network (CNN). Likewise, we

also researched this approach.

2.1 Convolutional Neural Networks

A CNN is exactly what it sounds like, a neural

network where at least one of the layers performs a

mathematical operation known as a convolution. In

CNNs we use discrete convolutions, which takes the

input as a matrix and passes a smaller matrix over it

(usually referred to as the kernel) [2]. It then

performs a matrix multiplication between the kernel

and the portion of the input matrix that overlaps the

kernel. The values in the kernel have a distinct effect

on the features which are extracted from the input

matrix. A diagram of this is shown below.

Figure 1. Here the green grid is the activation layer and the grid

below it is the input to a convolution or pooling layer. We note that for

each cell in the activation layer, there is a shadow over a portion of the

input layer. This shadow is the kernel.

2.2 Our Method

For our project we chose the default kernel values

provided by the Keras library [1], however these

values can have a significant impact on the outcome of

a convolutional layer. For instance, a Gaussian kernel

will apply a Gaussian blur to the photo. There are a

number of hyperparameters we used Keras Tuner [6]

to find optimized values for, such as the number of

filters (kernels) in a convolutional layer (Fig. 1.4) ,

stride of the pooling layer (Fig 1.3) , the size of the

kernel (Fig. 1.5) and the number of convolutional

layers themselves (Fig 1.1). All these results will be

discussed in the next section. In summary we used a

specific configuration of convolutional layers, pooling

layers, and dense layers with optimized

hyperparameters to achieve a successful image

classification result. These pooling layers are

responsible for feature extraction. They do this by

passing a kernel over some input matrix and extracting

the maximum value in that kernel and passing it to the

activation layer. All our convolution layers use a

ReLU activation function, and our output layer uses

the sigmoid activation function.

2.3 Our Architecture

After running the trials with Keras Tuner as

outlined above, we landed on the following

architecture. We used a combination of convolution

layers in series with max pooling layers, finally ending

with a fully connected layer (dense layer) which leads

into the output layer, as shown in Figure 2 below. This

is loosely based on the architecture described in the

Google Developers ML Practicum on Machine

Learning [3].

Figure 2. Chart of the best architecture found by experimentation.

3. Description of Results

After running multiple experiments, each

examining the effect of changing a singular parameter

of our model, we found some interesting results. All

our experiments were run under the assumption that

the most important metric of the outcome of a singular

model is its accuracy when run over the test dataset.

Each of the various models first trained against the

same dataset and were then run against the same

validation data set. Thus, the accuracies represented

below represent as close to real-world, practical results

as possible.

Initially, we experimented with the number of

Convolutional Layers. From our testing, we found that

the number of layers that resulted in the most accurate

results was 6 Convolutional Layers. The remaining

trials we ran, as well as their respective accuracies can

be seen below, in Figure 3.

Figure 3. A graph showing the accuracy of the model on the

validation data as a function of the number of convolutional layers.

Next, we tested various kernel sizes with respect to

pooling layers versus the resulting accuracies. For this

experiment, we found the most accurate Max Pooling

kernel size to have been 6, though the potential for

other kernel sizes to overtake that result exists under

certain conditions. These other iterations may be seen

in Figure 4.

Figure 4. The graph showing validation accuracy as a function of

the size of the max pooling layer's kernel.

On a similar front, we also explored pooling layer

strides. Our results showed that a kernel stride for max

pooling layers of 5 to have been the most accurate,

though the data trends seem to indicate further

performance improvements may have been obtained

by continuing to increase the stride. This data trend is

exemplified in Figure 5.

Figure 5. The graph showing the validation accuracy as a

function of the Max pooling layer's kernel stride. The stride is the

number of pixels the kernel will move at each iteration.

We then tested altering the number of filters per

layer, which is the dimensionality of the output space

for that layer. For this we found the best configuration

was an output dimension with 32 channels. As shown

in Figure 6 below.

Figure 6. The graph showing validation accuracy as a function of

the dimensionality of the output space.

Also, we ran trials to find the best kernel size for

the Convolutional Layers. Interestingly, our results

showed that the most optimal kernel size was 3. This

kernel size produced a greater accuracy by a notably

large factor. See Figure 7 below for the exact margins.

Figure 7. The graph of the validation accuracy as a function of the

convolutional layer's kernel size.

Lasty, we experimented to find what size dense

layer before the output layer provided the best

validation accuracy. We ran tests on layer sizes

starting with a size equal to that of the output layer

(two) and increased my powers of two until we

reached a layer size of 1024 nodes. After all trials

were completed, we found the best configuration to

be a size of 512 nodes. See Figure 8 below for more

details.

Figure 8. The graph of the validation accuracy as a function of the

number of nodes in the dense layer before the output layer.

4. Conclusion

In this paper, we explored the impacts of tweaking

various parameters of a convolutional neural network

to find the maximum accuracy over a basic image

classification problem.

4.1 Our Results

Our best model boasts an accuracy of 91.80% on

the validation dataset, which is quite strong in a

vacuum. However, in testing the final model with data

from the internet, we found some weaknesses in it.

These weaknesses can largely be attributed to the size

of our training dataset, which only has 1027 training

images (500 horses, 527 humans). There also exists a

bias in our training data. Namely, the dataset is biased

towards full body images of humans. Due to this bias,

if given an image of a human in which only a portion

of the body is visible, say their head, it will misclassify

the image. Which leads us to ponder how we can

improve the accuracy of our model on more general

data.

4.2 Next Steps

 Our data shows that the single variable that makes

the most impact when changed is the Kernel Size of

one or more convolutional layer(s). Our experiments

focused on the effects of changing a single parameter

at a time, however it may be beneficial to allow the

tuning of several parameters simultaneously to find the

best overall configuration. More excitingly,

experimenting with various boosting methods may

also lead to improvements.

Additionally, the dataset we tested with was

relatively small, and improvements to accuracies

could likely be seen when performing data

augmentation to boost the number of training data

points.

Furthermore, our current model is only designed to

support a specific size and shape for input images. It

would be much more beneficial to the average

application of a CNN to allow a variety of image sizes

to be used.

And finally, a larger and more varied training

dataset would likely see substantial gains in accuracy.

This could be achieved by open sourcing the dataset to

allow input from the general public, as well as mining

data from the internet.

References

[1] Keras API reference. (n.d.). https://keras.io/api/

[2] Lacroix, S. F., & Peters, A. Convolution. Wikipedia.

https://en.wikipedia.org/wiki/Convolution, 2023

[3] Google Developers. ML Practicum: Image Classification | Machine Learning.

https://developers.google.com/machine-learning/practica/image-classification

[4] Szeliski, R. Computer Vision: Algorithms and Applications, 2022

[5] TensorFlow Dataset Catalog. TensorFlow.

https://www.tensorflow.org/datasets/catalog/horses_or_humans, 2022

[6] O'Malley, Tom, Bursztein, Elie, Long, James, Chollet, François, Jin, Haifeng, Invernizzi,

Luca et al., KerasTuner, https://github.com/keras-team/keras-tuner, 2019

https://keras.io/api/
https://en.wikipedia.org/wiki/Convolution
https://developers.google.com/machine-learning/practica/image-classification
https://www.tensorflow.org/api_docs/python/tf
https://github.com/keras-team/keras-tuner

